Litecoin Wiki

[WTS] World gold and silver - located in Hong Kong - Japanese Edo and modern money/Chinese dollars and ingots/Asian oddities/Hong Kong banknotes/Greece/UK/Cambodia/Indonesia/Straits/Laos/Maldives

All kinds of new stuff and some older stuff with lower prices for some!
Japan
Greece
Cambodia
Hong Kong
Indonesia
Laos
Vietnam
Straits Settlements
Maldives
China
British Isles
Shipping
Starting at $5.5 with tracking but free if you buy enough. Should take 7-14 working days if it takes longer contact me and I will initiate an investigation. If they conclude the package is lost I will do a full refund but it will take up to a month so you'll need patience. Faster courier services are available with starting ranges of $40-85 increasing by weight, and DHL can access some areas my local post administration cannot.
SEE HERE for where I am allowed to ship to by airmail. For instance, I can ship to all of the US now but I still can't ship to Russia, South Africa or South America. Please check first before purchasing to avoid disappointment.
Payment
Thanks for looking!
submitted by FeroxDraken to Coins4Sale [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

What's Happening At Dash? | Continually Updated News & Announcements Thread

Welcome to dashpay!
If you are new to Dash, we encourage you to check out our wiki, where the Dash project is explained from the ground up with many links to valuable information resources. Also check out the menu bar on top and the sidebar to the right. We have very active Discord and Telegram channels where the community is happy to answer any and all newcomer questions.

Purpose of this post

This post is directed towards community members who wish to rapidly access information on current developments surrounding the Dash cryptocurrency.
Lately we've noticed how the pace of events picked up significantly within the Dash project due to many years of hard work coming together and pieces falling into place ("Evolution" is finally here. It's called Dash Platform). For the purpose of keeping these many pieces of information together, however, singular Reddit submissions are insufficient. Thus we decided to maintain a pinned thread collecting blog posts, interviews, articles, podcasts, videos & announcements. Check back regularly, as this thread will always feature the latest news around Dash, while also serving as a mid-term archive for important announcements and developments.
Journalists looking for news and contact opportunities wrt Dash, please bookmark:

Dash Press Room

"At Dash Press Room you will find the latest press releases, media materials and product updates on Dash - Digital Cash."

Dash Platform Video Series (formerly known as "Evolution") with Amanda B. Johnson

  1. Dash is Becoming a Cloud | Dash Platform #1
  2. What is Dash Drive? | Dash Platform #2
  3. What is Dash's Decentralized API? (DAPI) | Dash Platform #3
  4. Usernames & Dash Platform Name Service (DPNS) | Dash Platform #4

Dash Core Group News

(last updated: Oct 9th, 2020)

Dash Insights with Mark Mason & Dash Talk with Amanda B. Johnson

(last updated: Oct 9th, 2020)

Development news

(last updated: Oct 9th, 2020)

Adoption, Partnership, Business Development, General News

(last updated: Oct 3rd, 2020)
submitted by Basilpop to dashpay [link] [comments]

Mining and Dogecoin - Some FAQs

Hey shibes,
I see a lot of posts about mining lately and questions about the core wallet and how to mine with it, so here are some facts!
Feel free to add information to that thread or correct me if I did any mistake.

You downloaded the core wallet

Great! After a decade it probably synced and now you are wondering how to get coins? Bad news: You don't get coins by running your wallet, even running it as a full node. Check what a full node is here.
Maybe you thought so, because you saw a very old screenshot of a wallet, like this (Version 1.2). This version had a "Dig" tab where you can enter your mining configuration. The current version doesn't have this anymore, probably because it doesn't make sense anymore.

You downloaded a GPU/CPU miner

Nice! You did it, even your antivirus system probably went postal and you started covering all your webcams... But here is the bad news again: Since people are using ASIC miners, you just can't compete with your CPU hardware anymore. Even with your more advanced GPU you will have a hard time. The hashrate is too high for a desktop PC to compete with them. The blocks should be mined every 1 minute (or so) and that's causing the difficulty to go up - and we are out... So definitly check what is your hashrate while you are mining, you would need about 1.5 MH/s to make 1 Doge in 24 hours!

Mining Doge

Let us start with a quote:
"Dogecoin Core 1.8 introduces AuxPoW from block 371,337. AuxPoW is a technology which enables miners to submit work done while mining other coins, as work on the Dogecoin block chain."
- langerhans
What does this mean? You could waste your hashrate only on the Dogecoin chain, probably find never a block, but when, you only receive about 10.000 Dogecoins, currently worth about $25. Or you could apply your hashrate to LTC and Doge (and probably even more) at the same time. Your change of solving the block (finding the nonce) is your hashrate divided by the hashrat in sum - and this is about the same for Doge and LTC. This means you will always want to submit your work to all chains available!

Mining solo versus pool

So let's face it - mining solo won't get you anywhere, so let's mine on a pool! If you have a really bad Hashrate, please consider that: Often you need about $1 or $2 worth of crypto to receive a payout (without fees). This means, you have to get there. With 100 MH/s on prohashing, it takes about 6 days, running 24/7 to get to that threshold. Now you can do the math... 1 MH/s = 1000 KH/s, if you are below 1 MH/s, you probably won't have fun.

Buying an ASIC

You found an old BTC USB-miner with 24 GH/s (1 GH/s = 1000 MH/s) for $80 bucks - next stop lambo!? Sorry, bad news again, this hashrate is for SHA-256! If you want to mine LTC/Doge you will need a miner using scrypt with quite lower numbers on the hashrate per second, so don't fall for that. Often when you have a big miner (= also loud), you get more Hashrate per $ spent on the miner, but most will still run on a operational loss, because the electricity is too expensive and the miners will be outdated soon again. Leading me to my next point...

Making profit

You won't make money running your miner. Just do the math: What if you would have bougth a miner 1 year ago? Substract costs for electricity and then compare to: What if you just have bought coins. In most cases you would have a greater profit by just buying coins, maybe even with a "stable" coin like Doges.

Cloud Mining

Okay, this was a lot of text and you are still on the hook? Maybe you are desperated enough to invest in some cloud mining contract... But this isn't a good idea either, because most of such contracts are scams based on a ponzi scheme. You often can spot them easy, because they guarantee way to high profits, or they fake payouts that never happened, etc.
Just a thought: If someone in a subway says to you: Give me $1 and lets meet in one year, right here and I give you $54,211,841, you wouldn't trust him and if some mining contract says they will give you 5% a day it is basically the same.
Also rember the merged mining part. Nobody would offer you to mine Doges, they would offer you to buy a hashrate for scrypt that will apply on multiple chains.

Alternative coins

Maybe try to mine a coin where you don't have ASICs yet, like Monero and exchange them to Doge. If somebody already tried this - feel free to add your thoughts!

Folding at Home (Doge)

Some people say folding at home (FAH - https://www.dogecoinfah.com/) still the best. I just installed the tool and it says I would make 69.852 points a day, running on medium power what equates to 8 Doges. It is easy, it was fun, but it isn't much.
Thanks for reading
_nformant
submitted by _nformant to dogecoin [link] [comments]

Canaan's new ASIC is a Pipe Dream, not an Ethereum Threat

So, yesterday Kristy-Leigh Minehan posted on Twitter that a company named Canaan announced an ASIC that is capable of 0.68W/Mhs
That's 2200Mh/s running at 1500w
https://twitter.com/OhGodAGirl/status/1176938519866089473
Here is a list of how it compares to other ASICs and GPUs.
https://blog.miningstore.com/blog/ethereum-mining-hardware-for-2019
She used this tweet to promote the need for ProgPoW
Today, I am attempting to explain that Canaan is not a threat to centralize Ethereum mining with their ASICs.
First, I cannot find any information regarding Canaan announcing an Ethereum ASIC other than Kristy's twitter post
There is only one article written about it and it uses Kristy's twitter post as their source.
https://cryptoslate.com/ethereum-asic-dominates-gpu-performance/
Nothing on Canaan's website talks about this miner
Nor does Canaan's twitter account mention anything like this.
If we look closely at Kristy's twitter picture, you can see the Canaan Ethereum miner will be called the V10.
I cannot find any info anywhere on this miner.
You would think that if Canaan is unveiling a new product, they would be talking about it more to spread awareness and raise hype, but they aren't.
I mean, they made a big to-do when they announced the A10 bitcoin miner in March, so why are they posting nothing about the V10 ethereum miner.
https://twitter.com/canaanio/status/1111513725733724160
And a google search will show many many more articles written about the bitcoin A10 after its announcement.
I'm not saying the announcement isn't real, just that I find it odd that the company isn't talking about it themselves.
Canaan did respond to a tweet from “cryptoState”, the writer's of the article based on Kristy's tweet.
Canaan replied that the v10 is not an official worldwide Canaan product.
https://twitter.com/canaanio/status/1177088253431668736
and further in the cryptostate article, Canaan says “It is a little hard to explain, but those are not products designed and built by Canaan engineering. They are products sold by the domestic sales team and are not an official worldwide Canaan product,”
I do not know what that means exactly. If it means it's not an official Canaan product, or that it won't be available worldwide, or what.
But this is the first clue to me that it isn't anything to worry about.
If it's not an official Canaan product, then it doesn't seem like it will have support from Canaan to bring it to market.
It won't be marketed by Canaan, use it's supply chain, it's business resources and contacts, use it's support system, or be built by Canaan.
Next, yes 0.68W/Mhs is more efficient than GPUs, but that isn't all that matters when miners choose the devices to use.
What matters also is how much the machine costs.
If the V10 is price too high, then it's not something to worry about.
Without a price, Kristy can't claim in good faith that the V10 is something Ethereum needs to worry about and a reason ProgPoW needs to be adopted.
I'm not sure how to price the thing, myself, but at current ETH prices and hashrate, it would make $2200 in 4 months.
I think generally ASIC mfgs price their machines to break even in 3-4 months.
So that would be the machine will cost around $2200.
BUT, that's only if ONE machine is running on the network.
The more machines on the network, the less profitable they are.
If we look at the Avalon A1066, it's november batch costs $1390, and has a break-even time of 464 months at current bitcoin prices.
So it seems to me the Canaan V10 will be quite a bit more expensive than $2200.
Which doesn't make it feasible for that many people to buy.
Next, there was no product on display at the New Era Mining Summit, where this product was announced.
Only some graphics of numbers they claim.
Nor can I find any technical documentation talking about how they plan to achieve the advertised hashrate
I tweeted Kristy telling her that this seems, at best, like just an idea to me, to help them raise money and that it takes more than an idea to bring an ASIC to market.
https://twitter.com/AltcoinXP/status/1177290387205054464
Kristy then blocked me on Twitter and told me to stop spreading misinformation.
https://imgur.com/lWEAWbd
So, now let's talk about the article I replied to her with, claiming that Canaan doesn't have enough funding for this.
Granted, I said this without doing as much research as I could've, but let's see if what I said holds true.
Here is the article I linked in the tweet.
https://www.coindesk.com/avalon-bitcoin-miner-maker-canaan-is-plotting-another-ipo-attempt
Notice the date this article was published. March 27th 2019.
Notice that Avalon announce their Bitcoin A10 miner the next day.
https://twitter.com/canaanio/status/1111513725733724160
Perhaps to help attract funding from new investors, which the Coindesk article says they haven't been able to bring on any new investors in a long time.
I'm not going to cite the whole article here, read it for yourself, but it generally explains that Canaan is unable to attract new funding.
Also, Xianfu Lui, a 17.2% shareholder in Canaan left the company in February, so I doubt he invested money into Canaan.
https://www.coindesk.com/co-founder-quits-avalon-mining-chip-maker-canaan-over-differences
Here are some more Coindesk articles speaking about Canaan trying to raise money.
https://www.coindesk.com/huobi-plans-backdoor-ipo-attempt-in-hong-kong-document-suggests
“After mining giant Bitmain’s IPO attempt in Hong Kong was allowed to expire, apparently due to reluctance from HKEX, it’s reportedly now planning to list in the U.S. Another miner manufacturer, Canaan Creative, is also reported to have already confidentially filed in the U.S. after a failed HKEX attempt. “
https://www.coindesk.com/bitcoin-miner-maker-canaan-confidentially-files-for-ipo-in-us-report
https://www.coindesk.com/bitcoin-miner-canaans-ipo-likely-delayed-after-hong-kong-filing-expires
“The Reuters report, citing anonymous sources, further said the HKEX and financial regulators in Hong Kong have raised questions over Canaan’s business model, given the volatile nature of cryptocurrencies. As such, the news agency said the IPO might not go ahead this year, since there have been no updates from a listing hearing with the HKEX. “
So seems to be Caanan is having a hard time finding funding for their endeavors. Pretty much every single article on Coindesk about them is about them trying to get funding and failing at it.
So do they have enough money to bring the V10 to market AND bring enough V10s to be a problem?
They would need to produce 45,000 units to get 50% of the Ethereum mining power.
Current network is 197TH/s https://bitinfocharts.com/ethereum/
Currently Bitmain is estimated to have produced less than 20,000 units since the Antminer E3's announcement in April 2018.
https://www.reddit.com/ethereum/comments/d8fuvj/an_argument_against_progpow_a_day_part_1/f1axc2c/
https://www.coindesk.com/bitmain-confirms-release-first-ever-ethereum-asic-miners
Bitmain being a much larger company than Canaan, it seems unlikely they will produce 45,000 units quick enough to become a problem.
Anyway,
For those of you that don't know, Canaan manages the Avalon bitcoin ASICs and have done so since 2014. Canaan is fulling in charge of Avalon.
https://en.bitcoin.it/wiki/Avalon
Maybe I should've said that sooner, I don't know. I'm just typing as I come up with stuff.
But we can look at Avalon's bitcoin past to determine what the future ethereum miner supply might look like. Keep in mind though, this was also during a time when they were well-funded.
I'm not sure what their bank account looks like now, but they have been in the red every year since their existance, so I have to assume they have less money now than when they were releasing bitcoin miners
Avalon announce the A10 March 2019, and started shipping pre-orders in October 2019.
If the V10 follows suit, we won't see a V10 in the hands of miners until April 2020
https://www.coindesk.com/demand-for-new-bitcoin-miners-is-again-outstripping-supply
Ok, I'm done. That's all I put together and why I don't believe the Canaan ASIC that was announced is a concern warranting the immediate adoption of ProgPoW
Thanks for reading.
submitted by Anthony-AltcoinXP to ethereum [link] [comments]

Bitcoin Gold a Shitcoin Vulnerable to Attack Despite $200 Million Market Cap

Bitcoin Gold a Shitcoin Vulnerable to Attack Despite $200 Million Market Cap

https://preview.redd.it/vddehe8qfo321.png?width=690&format=png&auto=webp&s=44a4111dddd126729769612bd27e1ebc30753e14
https://cryptoiq.co/bitcoin-gold-a-shitcoin-vulnerable-to-attack-despite-200-million-market-cap/
The War On Shitcoins Episode 1: Bitcoin Gold (BTG). The war on shitcoins is a Crypto.IQ series that targets and shoots down cryptocurrencies that are not worth investing in either due to their being scams, having serious design flaws, being centralized, or in general just being worthless copies of other cryptocurrencies. There are thousands of shitcoins that are ruining the markets, and Crypto.IQ intends to expose all of them. The crypto space needs an exorcism, and we are happy to provide it.
There are more than 2,000 cryptocurrencies listed on CoinMarketCap, and Bitcoin Gold (BTG) is near the top at number 25 with a market cap of $207 million. This would seem to indicate that Bitcoin Gold is a major cryptocurrency, but it is simply a copycat of Bitcoin with one key and debilitating difference that makes it worse than Bitcoin. Bitcoin Gold is designed to block ASIC miners, leaving only GPU miners.
The idea was that GPU miners would rally around Bitcoin Gold since GPU Bitcoin miners were disenfranchised by ASIC miners years ago. Ultimately, this decision to only allow GPUs resulted in such a low mining hash rate that Bitcoin Gold is vulnerable to 51 percent attacks, and a serious 51 percent attack has already happened once. Further, Bitcoin Gold has had centralization problems from the very beginning.
When Bitcoin Gold launched in November 2017 the developers did a massive premine of 8,000 blocks, which yielded them about 100,000 BTG. At today’s price $12 this is $1.2 million, and when BTG’s price peaked near $500, this was $50 million. This premine is unfair to other BTG miners, traders, and investors. Supposedly, the premined BTG were placed in an “endowment,” which means the developers will receive all of that money eventually, just not all at once. There is no way to verify if this is even true, however, and the excessive 97 percent BTG price crash since January 2018 might be partially due to developers dumping their coins.
A far more serious issue than the premine is BTG’s lack of network security. BTG made mining ASIC resistant by using the Equishash Proof of Work (PoW) algorithm. However, ASICs were eventually developed for Equihash since ASICs can be developed for any PoW algorithm. In May 2018 a 51 percent double spend attack occurred on the Bitcoin Gold network, and a hacker stole $18.6 million from cryptocurrency exchanges that listed BTG. This caused the developers to hard fork in order to implement a newer version of Equihash that is supposedly more ASIC resistant. Clearly, the developers did not learn their lesson that there is no ASIC-resistant PoW algorithm. If Bitcoin Gold became valuable enough, someone would produce an ASIC for it.
It is unclear if Equihash ASICs were the reason for the 51 percent attack, since an attacker could literally just rent some hash rate on a cloud mining site and successfully 51 percent attack Bitcoin Gold. Currently it only takes 1.6 MH/s of rented mining power to successfully perform a double spend attack on the Bitcoin Gold network, and this costs about $1,000 per hour if the hash rate is rented from NiceHash.
Effectively, Bitcoin Gold is not cryptographically secure. The original purpose of banning ASIC miners so that GPU miners could thrive ended up being a fatal flaw for Bitcoin Gold. It is ridiculous that major exchanges like Binance and Bitfinex still offer BTG trading. This is a true disservice to the users of these exchanges and is a risk for the exchanges themselves.
Crypto users need to educate themselves thoroughly before buying any cryptocurrency, or they could end up buying a shitcoin like Bitcoin Gold just because it has a high ranking on CoinMarketCap. BTG has already lost 97 percent of its value since January 2018, and there is strong potential for it to become completely worthless once someone decides to rent some hash power and perform a vicious 51 percent attack.
submitted by turtlecane to CryptoCurrency [link] [comments]

Burstcoin Is A Robust And Unique Cryptocurrency: Proof of Capacity (PoC) Ensures Decentralization, Energy Efficiency, And Low Barrier To Entry

http://www.cypherpunklabs.com/burstcoin-is-a-robust-and-unique-cryptocurrency-proof-of-capacity-poc-ensures-decentralization-energy-efficiency-and-low-barrier-to-entry/
Decentralization is perhaps the fundamental reason why Bitcoin has been successful. Since Bitcoin is decentralized, its network cannot be controlled by any government, corporation, or other centralized entity, and this is why Bitcoin still exists to this day rather than being shutdown a long time ago. Bitcoin achieves decentralization through its Proof of Work (PoW) algorithm, where miners around the world cryptographically hash transactions into blocks and receive block rewards for their efforts, and nodes constantly check to ensure that all confirmed transactions are following consensus rules.
The major caveat with PoW is it is energy intensive. This has especially become a problem due to the rapid rise in Bitcoin’s price long term, which has resulted in an arms race of sorts to amass the most hashing power in order to obtain the most mining profits. Indeed, the Bitcoin hash rate has risen orders of magnitude, from MH/s, to GH/s, to TH/s, to PH/s, and now up to its all-time high so far of 84 EH/s. This represents exponentially more computing resources and energy consumption.
This is a problem for two reasons. First off, there is a very high barrier to entry for new users to mine Bitcoin. It requires thousands of dollars of mining equipment to make any worthwhile profit from mining Bitcoin.
Secondly, Bitcoin mining consumes a massive amount of energy worldwide. It is estimated by Digiconomist that Bitcoin mining uses 73.12 TWh of energy annually, equivalent to the electricity consumption of the entire country of Austria, or 0.33% of total global electricity consumption. This releases nearly 35 Megatons of Carbon Dioxide annually, contributing to global warming, aside from other environmental damage caused by burning fossil fuels and manufacturing mining equipment. Digiconomist may be an overestimate of Bitcoin’s environmental impact, but it is somewhere in the ballpark.
Numerous alternative cryptocurrencies have tried to be environmentally friendly via using the Proof of Stake (PoS) algorithm, but this sacrifices decentralization, since all the voting rights end up concentrated into the hands of developers and major bag holders.
This is where Proof of Capacity (PoC), formerly called Proof of Space, comes in. Instead of using specialized Bitcoin mining equipment, PoC simply uses hard drive space to mine cryptocurrency. Burstcoin (BURST) is the #1 PoC cryptocurrency. Bitcoin HD (BHD) is another PoC cryptocurrency, but it has a highly centralized supply with 3.1 million out of 5 million total coins in the hands of the developers, so it is nonsensical to choose BHD considering that BURST has a highly decentralized supply. The problem with a centralized supply is it can cause a coin’s value to collapse long term due to developers dumping on the market.
In order to start mining BURST, a user simply allocates part of their hard drive, and this area of hard drive is plotted. Plotting is a 1-time hashing cycle where the hard drive is filled with cryptographic hashes via the Shabal cryptographic algorithm. The node also has to synchronize with the BURST blockchain before mining. Fortunately, the BURST blockchain is less than 9 GB, versus the Bitcoin blockchain which is nearly 240 GB.
Once plotting and synchronization is complete the user can begin mining. During each mining round the plot file is searched to find the correct cryptographic hash for the block, and when the correct hash is found the user receives a block reward. Essentially, the hashes in the plot file can be thought of as lottery tickets, and the bigger the size of the plot, meaning the more hard drive space dedicated to mining BURST, the more likely it is to find the correct hash.
Like with Bitcoin mining, users can join pools so that even if they have a small amount of hard drive space they can still earn BURST at a steady pace.
Since BURST’s PoC algorithm simply reads a hard drive versus the intense computational work of Bitcoin’s PoW, BURST mining uses a negligible amount of electricity. It is estimated that each BURST transaction consumes 0.0024 KWh of electricity, versus about 1,000 KWh used for each Bitcoin transaction.
Aside from being far more environmentally friendly, electricity costs are negligible for BURST miners, so BURST miners earn nearly 100% profit. This opens the door for users with any level of technology to profitably mine BURST, including personal computers and technically even cell phones. Compare this to Bitcoin where mining with even a powerful personal computer is impossible.
Ultimately, BURST’s energy efficiency makes the barrier to entry very low, a user simply needs to have hard drive space to mine BURST. This results in the BURST network being highly decentralized.
Notably, miners do not have to buy any special equipment to mine BURST, they just use spare hard drive space that was sitting unused, versus Bitcoin mining where specialized hardware that costs thousands of dollars is required. Bitcoin mining rigs often become obsolete with time, and also have no other use besides Bitcoin mining, whereas hard drive space used for BURST mining never becomes obsolete and can easily be freed up and used for storage by deleting the plot file.
In summary, BURST is one of the most unique and fundamentally robust cryptocurrencies due to its PoC algorithm, which ensures decentralization while simultaneously guaranteeing energy efficiency and a low barrier for miner entry.
submitted by turtlecane to burstcoin [link] [comments]

Regarding Threads on Bitmain and ASIC Resistance (Mega Thread!)

Guys,
Let’s take a minute to talk about what’s going on. We need to make sure all users are on the same page and the falsifications and assumptions stop.
I'm with you, and I understand that you feel betrayed. However, cleaning up after the constant bickering for those pro-fork and those anti-fork is growing tiresome. It's time we have a civil discussion and talk about facts.

Timeline of events

On 03/31/2018, a user from Ethfans.org posted a video on Telegram of a supposed Ethash ASIC. The video made its way to /Ethermining in a thread. It is important to mention that these values can be modified by changing “get_miner_status.cgi” and “minerStatus.cgi” and that there has been no credible evidence that has popped up in the nine days following the release of the supposed leak. Additionally, the following abnormalities should be noted:
Also on 3/31/2018, a user on Russian site Bits.media noticed that the pre-order for the Bitmain E3 was already up. It was believed to be an April fools joke; needless to say, it wasn’t.
On 04/02/2018, Bitmain launched the E3 and began taking pre-orders for a June delivery. At that time, the price was $800 and promised a hashing power of 180MH/s at 800 watts.
On 04/06/2018, Ethereum core developers decided against hard-forking Ethereum at this time, as they weren't convinced that it would positively impact the community given a hard-fork's disruption and the unknown of how the ASIC worked (specifically if it was programmable). The community became upset over broken promises of ASIC resistance, and this has since spread to a full out finger pointing of who is wrong.
On 04/08/2018, an apparently forged photo showed up showing a higher-hashing ASIC with far less power consumption. This is not only very unlikely, but the link in the photo was gibberish, whereas the E3's link was valid. We're writing that one up as FUD.

The "ASIC Resistance" Argument

At this point, I think that it’s I think it's important that we visit some key points of the Ethereum project. A lot of people have been quoting the whitepaper, calling ETH ASIC-proof and implying that the developers do not care about the problem.
In actuality, Ethereum never promised that it would be ASIC-proof, merely that it would provide an economic incentive to be resistant to the development of an ASIC. I'd like to produce a quote from the Ethereum Wiki, found here.
Ultimately, perfect ASIC resistance is impossible; there are always portions of circuits that are going to be unused by any specific algorithm and that can be trimmed to cut costs in a specialized device. However, what we are looking for is not perfect ASIC resistance but rather economic ASIC resistance.
...
The problem is that measuring an economy in a secure way is a difficult problem. The most obvious metric that the system has access to is mining difficulty, but mining difficulty also goes up with Moore's law and in the short term with ASIC development, and there is no known way to estimate the impact of Moore's law alone and so the currency cannot know if its difficulty increased by 10x due to better hardware, a larger user volume or a combination of both. Other metrics, such as transaction count, are potentially gameable by entities that want the supply to change in a particular direction (generally, holders want a lower supply, miners want a higher supply).
This is solidified by revisiting the whitepaper, specifically the section which identifies how ASICs will be economically stymied:
This model is untested, and there may be difficulties along the way in avoiding certain clever optimizations when using contract execution as a mining algorithm. However, one notably interesting feature of this algorithm is that it allows anyone to "poison the well", by introducing a large number of contracts into the blockchain specifically designed to stymie certain ASICs. The economic incentives exist for ASIC manufacturers to use such a trick to attack each other. Thus, the solution that we are developing is ultimately an adaptive economic human solution rather than purely a technical one.
So with the Ethereum team providing only an economic reason to not develop an ASIC since the beginning, there has been no lie.

Second batch of E3s will not be profitable with Ethereum

As a response to the developers announcing that they are not initiating a hard fork, Bitmain raised the price of the second batch of E3s to $1800. With a PSU ($105) and shipping costs ($225), plus duty fees ($25). That brings each E3 up to $2,155, or $11.97 per MH.
Comparatively, this is like paying $300 per GPU ($1800) plus Mobo/PSU/risers ($355). I have built rigs with similar hashrates for under $1,900 ($10.50 per MH).
If we speculate that Casper is as close as we think (see below), coupled with the rising difficulty, the second batch of E3s are not likely to break-even with Ethereum as a whole. If ETH rises to its ATH, the second batch units may be profitable. Tis the risk of mining.

Current speculation:

  • ASICs are bad!
    • In the Ethereum mining community, ASICs to be viewed as a formidable commodity, when they should rather be viewed as a tool. Tools are never inherently good or bad, but how they are used can be, and some developers intend for the coin to eventually be used with an ASIC. Some coins, such as Sia, were designed to specifically work with an ASIC. > 51% centralization is bad.
  • Bitmain has a better ASIC.
    • Probably. But this is an unknown. Speculation of an ASIC is not a reason to fork the second largest cryptocurrency.
  • Bitmain will be a cause for centralization
    • Everything should be a concern for centralization. Hell, early miners can be a bigger concern. The principals of economies of scale still apply to mining; so those who started out with a lot of GPUs are heavily mining. I've set up warehouses full of GPUs for clients, so if you think some of the guys here are big shots, I promise you there are larger concerns for the current state of centralization.
    • I will also note that yes, we will need to worry about a mass-manufacturer of just ASICs, especially if they are pumping out > 30,000 units per month at the current rate. But the firm that uncovered Bitmain's ASIC, Susquehannah, claims that there are at least three other ASIC manufacturers out there. This puts some silent competition on Bitmain.
  • Ethereum is not as centralized as Bitcoin
    • You'd think that, and the goal of the whitepaper was for Ethereum to be less centralized as bitcoin. It even mentions that "three mining pools indirectly control roughly 50% of processing power in the Bitcoin network." Ethereum is in this state already. Ethermine controls ~28% of the network hashrate, F2pool has ~17%, and SparkPool has ~15%. Arguably, the Ethereum network is in a more sensitive state.
  • Casper is right around the corner.
    • This has been speculation for some time now. Developers confirmed that testnet should be fully operational by August, meaning that we may be able to expect PoS hybrid by DecembeJanuary assuming everything goes as planned.
  • Dev team does not care about miners
    • In the project's current state, miners are a necessity. Remember that seigniorage must be sinigicant enough for miners to continue mining, otherwise, the network would slow and we'd have another Crypto Kitties incident on our hands. Until Ethereum is PoS, you are valid.
  • Dev team wants to get rid of miners
    • Well, yeah. That's what PoS is about. Ethereum will not be Proof of Work forever and that needs to be appreciated.
  • We should fork ourselves into an ASIC-proof currency
    • Do it! Take some initiative and work up a team, I'll be happy to help and support in any way that I can, including pointing my hashing power your way.

Ethereum decision governance

Right now, large decisions are made by the Ethereum core developers. This last decision to not hard-fork was not well received by the community. It feels to be almost an "electoral college" kind of deal, and that's something that has upset a lot of people. Is this the topic that we need to discuss in more detail?

So what is this thread?

For now, this is going to replace our weekly discussion for a few weeks until everything calms down. The sub is in a volatile state and everyone is slinging FUD at everyone else. We need to clean up and calmly discuss our position on the matter at hand. This means:
  • No more fighting about the ASIC in the comments
  • OUTSIDE OF THIS THREAD, please do not shitpost. Meaning, no more strongly worded threads about how you're out of mining completely because of the ASIC, or how the developers screwed you over because ETH was supposed to be ASIC proof, or how people are whining. I'm deleting threads left and right for people who are just using the sub as an outlet to name call on both sides.
  • As always, constructive threads are welcome, but shitposts are to be confined to this thread, please.

We all have different opinions

I am going to remain neutral on this topic. I mine with both GPUs and ASICs, and I've worked with countless numbers of people who do as well. We need to cooperate as a community instead of tearing each other apart over the issue. Let's think before we post and keep comments constructive.
Happy mining!
  • Rob
submitted by Robbbbbbbbb to EtherMining [link] [comments]

Burstcoin Is A Robust And Unique Cryptocurrency: Proof of Capacity (PoC) Ensures Decentralization, Energy Efficiency, And Low Barrier To Entry

http://www.cypherpunklabs.com/burstcoin-is-a-robust-and-unique-cryptocurrency-proof-of-capacity-poc-ensures-decentralization-energy-efficiency-and-low-barrier-to-entry/
Decentralization is perhaps the fundamental reason why Bitcoin has been successful. Since Bitcoin is decentralized, its network cannot be controlled by any government, corporation, or other centralized entity, and this is why Bitcoin still exists to this day rather than being shutdown a long time ago. Bitcoin achieves decentralization through its Proof of Work (PoW) algorithm, where miners around the world cryptographically hash transactions into blocks and receive block rewards for their efforts, and nodes constantly check to ensure that all confirmed transactions are following consensus rules.
The major caveat with PoW is it is energy intensive. This has especially become a problem due to the rapid rise in Bitcoin’s price long term, which has resulted in an arms race of sorts to amass the most hashing power in order to obtain the most mining profits. Indeed, the Bitcoin hash rate has risen orders of magnitude, from MH/s, to GH/s, to TH/s, to PH/s, and now up to its all-time high so far of 84 EH/s. This represents exponentially more computing resources and energy consumption.
This is a problem for two reasons. First off, there is a very high barrier to entry for new users to mine Bitcoin. It requires thousands of dollars of mining equipment to make any worthwhile profit from mining Bitcoin.
Secondly, Bitcoin mining consumes a massive amount of energy worldwide. It is estimated by Digiconomist that Bitcoin mining uses 73.12 TWh of energy annually, equivalent to the electricity consumption of the entire country of Austria, or 0.33% of total global electricity consumption. This releases nearly 35 Megatons of Carbon Dioxide annually, contributing to global warming, aside from other environmental damage caused by burning fossil fuels and manufacturing mining equipment. Digiconomist may be an overestimate of Bitcoin’s environmental impact, but it is somewhere in the ballpark.
Numerous alternative cryptocurrencies have tried to be environmentally friendly via using the Proof of Stake (PoS) algorithm, but this sacrifices decentralization, since all the voting rights end up concentrated into the hands of developers and major bag holders.
This is where Proof of Capacity (PoC), formerly called Proof of Space, comes in. Instead of using specialized Bitcoin mining equipment, PoC simply uses hard drive space to mine cryptocurrency. Burstcoin (BURST) is the #1 PoC cryptocurrency. Bitcoin HD (BHD) is another PoC cryptocurrency, but it has a highly centralized supply with 3.1 million out of 5 million total coins in the hands of the developers, so it is nonsensical to choose BHD considering that BURST has a highly decentralized supply. The problem with a centralized supply is it can cause a coin’s value to collapse long term due to developers dumping on the market.
In order to start mining BURST, a user simply allocates part of their hard drive, and this area of hard drive is plotted. Plotting is a 1-time hashing cycle where the hard drive is filled with cryptographic hashes via the Shabal cryptographic algorithm. The node also has to synchronize with the BURST blockchain before mining. Fortunately, the BURST blockchain is less than 9 GB, versus the Bitcoin blockchain which is nearly 240 GB.
Once plotting and synchronization is complete the user can begin mining. During each mining round the plot file is searched to find the correct cryptographic hash for the block, and when the correct hash is found the user receives a block reward. Essentially, the hashes in the plot file can be thought of as lottery tickets, and the bigger the size of the plot, meaning the more hard drive space dedicated to mining BURST, the more likely it is to find the correct hash.
Like with Bitcoin mining, users can join pools so that even if they have a small amount of hard drive space they can still earn BURST at a steady pace.
Since BURST’s PoC algorithm simply reads a hard drive versus the intense computational work of Bitcoin’s PoW, BURST mining uses a negligible amount of electricity. It is estimated that each BURST transaction consumes 0.0024 KWh of electricity, versus about 1,000 KWh used for each Bitcoin transaction.
Aside from being far more environmentally friendly, electricity costs are negligible for BURST miners, so BURST miners earn nearly 100% profit. This opens the door for users with any level of technology to profitably mine BURST, including personal computers and technically even cell phones. Compare this to Bitcoin where mining with even a powerful personal computer is impossible.
Ultimately, BURST’s energy efficiency makes the barrier to entry very low, a user simply needs to have hard drive space to mine BURST. This results in the BURST network being highly decentralized.
Notably, miners do not have to buy any special equipment to mine BURST, they just use spare hard drive space that was sitting unused, versus Bitcoin mining where specialized hardware that costs thousands of dollars is required. Bitcoin mining rigs often become obsolete with time, and also have no other use besides Bitcoin mining, whereas hard drive space used for BURST mining never becomes obsolete and can easily be freed up and used for storage by deleting the plot file.
In summary, BURST is one of the most unique and fundamentally robust cryptocurrencies due to its PoC algorithm, which ensures decentralization while simultaneously guaranteeing energy efficiency and a low barrier for miner entry.
submitted by turtlecane to burst [link] [comments]

such beginner shibe thread wow how to get coin

 how to shibecoin v rich in minutes much instruct so simple any doge can do 

START HERE

UPDATE 1/21/14: I'm not updating this guide anymore. Most of the steps should still work though. See the wiki or check the sidebar for updated instructions.
Before you do anything else, you need to get a wallet. Until there's a secure online wallet, this means you need to download the dogecoin client.
Now open the client you just downloaded. You'll be given a default address automatically, and it should connect to peers and start downloading the dogechain (aka blockchain in formal speak). You'll know because there will be a progress bar at the bottom and at the lower right there should be a signal strength icon (TODO: add screenshots).
If you've waited 2 or 3 minutes and nothing is happening, copy this:
maxconnections=100 addnode=95.85.29.144 addnode=162.243.113.110 addnode=146.185.181.114 addnode=188.165.19.28 addnode=166.78.155.36 addnode=doge.scryptpools.com addnode=doge.netcodepool.org addnode=doge.pool.webxass.de addnode=doge.cryptopool.it addnode=pool.testserverino.de addnode=doge.luckyminers.com addnode=doge.cryptovalley.com addnode=miner.coinedup.comdoge addnode=doge.cryptoculture.net addnode=dogepool.pw addnode=doge.gentoomen.org addnode=doge.cryptominer.net addnode=67.205.20.10 addnode=162.243.113.110 addnode=78.46.57.132 
And paste it into a new text file called dogecoin.conf, which you then place into the dogecoin app directory.
Now restart your qt client and the blockchain should start downloading in about 1-2 minutes.
Once it finished downloading, you're ready to send and receive Dogecoins!

GETTING COINS

Decide how you want to get Dogecoin. Your options are:
I'll go into detail about each of these. I'm currently writing this out. I'll make edits as I add sections. Suggestions are welcome.

MINING

Mining is how new dogecoins are created. If you're new to crypto currencies, read this. To mine (also called "digging"), a computer with a decent GPU (graphics card) is recommended. You can also mine with your CPU, but it's not as efficient.

GPU MINING

These instructions cover only Windows for now. To mine, you'll need to figure out what GPU you have. It'll be either AMD/ATI or Nvidia. The setup for both is approximately the same.

Step One: Choose a pool

There's a list of pools on the wiki. For now it doesn't really matter which one you choose. You can easily switch later.
NOTE: You can mine in two ways. Solo mining is where you mine by yourself. When you find a block you get all the reward. Pool mining is when you team up with other miners to work on the same block together. This makes it more likely that you'll find a block, but you won't get all of it, you'll have to split it up with others according to your share of the work. Pool mining is recommended because it gives you frequent payouts, because you find more blocks. The larger the pool you join, the more frequent the payouts, but the smaller the reward you get.
Over a long period of time the difference between pool and solo mining goes away, but if you solo mine it might be months before you get any coins.

Step two: Set up pool account

The pool you chose should have a getting started page. Read it and follow the instructions. Instructions vary but the general idea is:
When you're done with this, you'll need to know:

Step three: Download mining software

For best performance you'll need the right mining software.
Unzip the download anywhere you want.

Step four: Set up miner

Create a text file in the same folder as your miner application. Inside, put the command you'll be running (remove brackets).
For AMD it's cgminer.exe --scrypt -o stratum+tcp://: -u -p
For Nvidia it's cudaminer.exe -o stratum+tcp://: -O :
Substitute the right stuff in for the placeholders. Then on the next line of the text file type pause. This will let you see any errors that you get. Then save the file with any name you want, as long as the file extension is .bat. For example mine_serverName.bat.

Step five: Launch your miner

Just open the .bat file and a command line window should pop up, letting you know that the miner is starting. Once it starts, it should print out your hash rate.
If you now go to the pool website, the dashboard should start showing your hashrate. At first it'll be lower than what it says in the miner, but that's because the dashboard is taking a 5 minute average. It'll catch up soon enough.
NOTE: A normal hashrate is between 50 Kh/s up to even 1 Mh/s depending on your GPU.

You're now mining Dogecoins

That's it, nothing more to it.

CPU MINING

CPU mining isn't really recommended, because you'll be spending a lot on more on power than you'd make from mining Dogecoin. You could better spend that money on buying Dogecoin by trading. But if you have free electricity and want to try it out, check out this informative forum post.

Trading

Trading has been difficult so far, but Dogecoin just got added to a few new exchanges. If you don't have a giant mining rig, this is probably the best way to get 100k or more dogecoins at the moment. I'll write up a more complete guide, but for now check out these sites:

Faucets

Faucets are sites that give out free coins. Usually a site will give out somewhere between 1 and 100 Dogecoin. Every site has its own time limits, but usually you can only receive coins once every few hours, or in some cases, days. It's a great way to get started. All you do is copy your address from the receive section of your wallet and enter it on some faucet sites. Check out /dogecoinfaucets for more. If you go to each site on there you might end up with a couple hundred Dogecoin!

Begging

This method is pretty straightforward. Post your receiving address, and ask for some coins. Such poor shibe. The only catch is, don't do it here! Please go to /dogecoinbeg.

Tips

At the moment there are two tip bots:
Other redditors can give you Dogecoin by summoning the tip bot, something like this:
+dogetipbot 5 doge
This might happen if you make a good post, or someone just wants to give out some coins. Once you receive a tip you have to accept it in a few days or else it'll get returned. Do this by following the instructions on the message you receive in your inbox. You reply to the bot with "+accept". Commands go in the message body. Once you do that, the bot will create a tipping address for you, and you can use the links in the message you receive to see your info, withdraw coins to your dogecoin-qt wallet, see your history, and a bunch of other stuff.
As a bonus, so_doge_tip has a feature where you can get some Dogecoins to start with in exchange for how much karma you have. To do this, send the message "+redeem DOGE" to so_doge_tip. You'll need to create a tipping account if you don't have one.
If you want to create a tipping account without ever being tipped first, message either of the bots with "+register" and an address will be created for you.

CHANGELOG

  • 1/21/14 - Added note about this thread no longer being updated
  • 1/21/14 - Changed wallet links to official site
  • 12/27/13 - Added 1.3 wallet-qt links
  • 12/21/13 - Added new windows 1.2 wallet link
  • 12/20/13 - Fixed +redeem text
  • 12/18/13 - Added short blurb on trading.
  • 12/18/13 - Updated cudaminer to new version (cudaminer-2013-12-18.zip).
  • 12/18/13 - Fixed +redeem link
  • 12/18/13 - Updates dogecoin.conf, from here.
  • 12/17/13 - Linked to mining explanation.
  • 12/17/13 - Added link to CPU mining tutorial, in response to this.
  • 12/16/13 - Added links to tip commands, link to dogetipbot wiki.
  • 12/16/13 - Note about tip commands going in body, in response to this.
  • 12/16/13 - Added link to cgminer mirror, thanks to scubasteve812 and thanks to Bagrisham.
  • 12/16/13 - Note about removing brackets in response to this.
  • 12/15/13 - Fixed hash rate as per this comment, thanks lleti
  • 12/15/13 - Added info for all other ways of getting money, except for trading (placeholder for now)
  • 12/15/13 - Added windows GPU mining instructions 12/15/13 - Added wallet instructions, list of how to get money
submitted by lego-banana to dogecoin [link] [comments]

WTF Happened to BITCOIN?! - YouTube LA VÉRITÉ SUR LE BITCOIN ! - LE RIRE JAUNE - YouTube BITCOIN BOOM IN 3 BIS 6 MONATEN ZU ERWARTEN How to start Bitcoin mining for beginners (SUPER EASY ... Magic Money: The Bitcoin Revolution  Full Documentary ...

Hash per second is an SI derived unit representing the number of double SHA-256 computations performed in one second, referred to as hash rate.It is usually symbolized as h/s (with an appropriate SI prefix).. Use in hardware specifications. The hash rate is the primary measure of a Bitcoin miner's performance. In 2014, a miner's performance was generally measured in Ghash/s, or billions of ... Eine typische 600 MH/s Grafikkarte hat einen Verbrauch von etwa 400 Watt, während ein FPGA mit einer Hashrate von 826 MH/s nur 80 Watt benötigt. Dies stellt eine fünffache Erhöhung der Energieeffizienz dar. Die Energieeffizient ist ein wichtiger Bestandteil des Gewinns, was viele Personen dazu bewog, FPGA's anstatt GPU's zu verwenden. Die Weld des Bitcoin-Minings befindet sich gerade im ... Verwenden des NeoScrypt-Algorithmus, der hilft, maximale Werte von MH / s zu erreichen; Verfügbarkeit von Tools zum Übertakten der Grafikkarte; Parameter über die Konfigurationsdatei ändern; ein detailliertes Protokoll anzeigen; Um die Arbeit mit dem Programm zu vereinfachen, können Sie die grafische Shell CGwatcher verwenden. Optionen für die Konfiguration CGMiner . Die Intensität des ... The Bitcoin network has a global block difficulty. Valid blocks must have a hash below this target. Mining pools also have a pool-specific share difficulty setting a lower limit for shares. How often does the network difficulty change? Every 2016 blocks. What is the formula for difficulty? difficulty = difficulty_1_target / current_target (target is a 256 bit number) difficulty_1_target can be ... SCRYPT (Litecoin) — 1 Mh\s for 3 USD; SHA-256 (Bitcoin) — 10 Gh\s for 1 USD; Ethash (Ethereum) — 100 Kh\s for 2 USD; Equihash (zcash for) — 1 H\s for 2 USD; X11 (Dash) — 1 Mh\s for 3 USD; It is also possible to enter a promotional code to receive a discount on the purchase. Profitability . On the site, in addition to the calculator of the average monthly earnings, there is also a ...

[index] [8424] [15971] [4931] [9227] [12495] [23598] [210] [45000] [18773] [26917]

WTF Happened to BITCOIN?! - YouTube

Best-selling author and former hedge fund manager James Altucher is not backing down from his $1-million-dollar bitcoin call that he boldly made back in 2017... Devenez incollable sur le Bitcoin ! Mon T-shirt Raclette is Coming : http://bit.ly/2AN4e4r Merci à Pepsucre d'avoir sponsorisé cette vidéo ! ;P Merci aux pot... Zwei führende Experten der Krypto / Bitcoin Szene haben unterschiedliche Stellungen bezogen. Der CEO von Binance versteht aktuell die Welt nicht mehr, Mike Novogratz glaubt aber weiterhin an ... Squarespace link: Visit http://squarespace.com/techquickie and use offer code TECHQUICKIE to save 10% off your first order. Why did Bitcoin's value crash aft... This video will show you how to start bitcoin mining from home. It's very easy and "free" to do if you have a gaming PC. *****...

#